
Context-Sensitive Resource Discovery

Guanling Chen and David Kotz
Department of Computer Science, Dartmouth College

{glchen, dfk}@cs.dartmouth.edu

Abstract

This paper presents the “Solar” system framework
that allows resources to advertise context-sensitive
names and for applications to make context-sensitive
name queries. The heart of our framework is a
small specification language that allows composition of
“context-processing operators” to calculate the desired
context. Resources use the framework to register names,
and applications use the framework to look up context-
sensitive name descriptions. The back-end system ex-
ecutes these operators and constantly updates the con-
text values, adjusting advertised names and informing
applications about changes. We report experimental re-
sults from a prototype, using a modified version of the
Intentional Naming System (INS) as the core directory
service.

1 Introduction

Much of the technology necessary to realize Mark
Weiser’s vision of ubiquitous computing [16] is now
available. Small portable devices, and the wireless net-
works to support them, are pervasive. The resulting
pervasive-computing environments are crowded, hetero-
geneous, and always changing. To succeed without dis-
tracting the user, pervasive-computing applications must
be aware of the context in which they execute, and au-
tomatically adapt as that context changes. An impor-
tant component is the ability to discover resources (ser-
vices and information sources) relevant to the applica-
tion’s context. If each resource is given a name, resource
discovery amounts to a query in the name space.

Pervasive-computing applications must discover and
use resources based on the current context.Context
is the circumstance in which an application runs, and
may include physical state, computational state, and

We gratefully acknowledge the support of the Cisco Systems Uni-
versity Research Program, Microsoft Research, the USENIX Scholars
Program, DARPA contract F30602-98-2-0107, and DoD MURI con-
tract F49620-97-1-03821.

user state. Imagine a nursing home equipped with net-
worked cameras and sensors that can track the location
of residents. A “SafetyCam” application can track a
person’s location and automatically retrieve the video
stream from a nearby camera. The cameras may be
named according to their location, and the dynamic lo-
cation information of the senior is used to identify ap-
propriate cameras. This scenario requires a context-
sensitive name query.

In another situation, the camera may be mobile. At
the scene of a disaster, rescue workers might wear hel-
mets with small attached cameras and a wireless net-
work interface. If these cameras are named according
to their location, a supervisor’s monitoring application
can request photographs of a particular area by selecting
cameras whose name (location) matches the area of in-
terest. The display automatically adjusts when a rescuer
moves into or out of that place. This scenario requires
context-sensitive names, which may change over time,
and persistent name queries, so that the application is
notified about the changing set of matching names.

These scenarios place several requirements on the
naming service. It must be flexible, so names can char-
acterize the resource and so queries can express the de-
sired characteristics; it must be scalable, to handle many
names; it must be fast, to support frequent name updates;
and it must be responsive, to quickly notify applications
about changes to the set of matches for their persistent
query. Existing work has partially solved this problem.
For example, the Intentional Naming System (INS) is
designed to handle frequent name updates in a mobile
environment [1].

These scenarios also place several requirements on
the resources and applications. Resources must actively
track their context so that they may update their name.
Applications must also track their context so that they
may update their query. We off-load these duties from
the resources and applications, for reasons of perfor-
mance (since resources and applications may reside on
a constrained platform attached to a low-bandwidth net-
work) and of engineering (to simplify the construction
of context-aware services and applications).

David Kotz
Copyright 2003 IEEE.
Available at <http://www.cs.dartmouth.edu/~dfk/papers/chen:naming.pdf>.
In Proc. of the First IEEE International Conference on Pervasive
 Computing and Communications, pages 243-252. March 2003.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Context-Sensitive Resource Discovery

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In this paper we present a name service, part of the
Solar framework for context-aware applications, that
helps resources to advertise context-sensitive names and
allows applications to make persistent, context-sensitive
queries. We show how our approach allows applica-
tions to flexibly define the desired context aggregation,
off-loads the task of updating and monitoring the name
space, and permits a decentralized and scalable imple-
mentation.

This work makes two contributions: a) an exten-
sion to the attribute-based name concept that supports
context-sensitive names and context-sensitive name
queries, and b) a distributed infrastructure that effi-
ciently supports immediate and persistent queries in
such a name space. Our infrastructure is designed
to leverage existing distributed directory services; for
our prototype we chose the Intentional Naming System
(INS) but any other service providing a registration and
look-up interface would suffice.

This work has two primary limitations. First, since
one of our goals is to reduce load on thin client devices
and on the low-bandwidth networks that serve them, we
embed the service in the infrastructure; thus our tech-
niques are not readily applicable to an infrastructure-free
(ad-hoc) environment. Second, security and privacy is-
sues are beyond the scope of this paper; interested read-
ers may find more information in another paper [14].

2 The specification language

Solar’s language serves three purposes: 1) resources
may advertise their existence by registering a name,
2) applications may discover resources by querying a
name, and 3) context-aware applications may indicate
how to derive their desired context information from that
provided by existing resources. Aresourceis an entity
that wishes to be discovered by applications. It may be a
service, willing to respond to requests from applications;
for example, a service might compute the estimated
travel time when provided two street addresses. Or, it
may be apublisherof context information. For simplic-
ity, we focus on publishers, and define them more thor-
oughly below. First, consider the structure of a name.

A name specificationis a set ofattributes, each of
which has a tag string and a value string. Resources use
name specifications to define their name; applications
use name specifications to query for matching names.
A query matches a name if all attributes of the query
are present in the name, and the values of corresponding
attributes are equal. (We plan to consider more complex
matches, such as inequalities, in future versions of the
system.) For example, the name

[sensor="camera", class="color",

room="215", building="Sudikoff"]

has four attributes; for the first attribute, the tag is “sen-
sor” and the value is “camera”. The query

[sensor="camera", building="Sudikoff"]

matches the above name, and the name of other cam-
eras that may be in Sudikoff. Acontext-sensitivename
specification may be used either as a name or as a name
query. In the specification

[sensor="camera", room=$alice-

locator:room, building="Sudikoff"]

the value of the “room” attribute is defined by context
information derived from anevent streamcalled $alice-
locator. Every context-sensitive name specification must
be accompanied by agraph specificationthat defines
the desired event streams. We next describe the event-
stream abstraction, then the language of graph specifica-
tions.

Event streams and operator graphs. Context infor-
mation is often derived by post-processing and aggre-
gating the output of several sources.Sourcesare sen-
sors that produce raw context information. Each unit of
context information published by a source is anevent,
structured as a set of attributes (tag/value pairs). Over
time, the output of a source is anevent stream. Oper-
ators aggregate context information by subscribing to
one or more event streams and publishing another event
stream. Thus, all sources and operators are eventpub-
lishers. Since all operators conform to the same publish
and subscribe interfaces, they can be stacked recursively
to form a directedgraph through which raw data flows
and is processed into context as output.

Figure 1(a) demonstrates these concepts using the
nursing-home example. At top left, a location source
advertises a static (not context-sensitive) name and pub-
lishes location events about all residents. Its subscriber,
a filter operator, discards events not pertaining to Al-
ice. The event (in italics) indicates that Alice is in room
120. At lower right, the SafetyCam application uses the
context-sensitive name specification

[sensor="camera", room=$alice-

locator:room, building="Sudikoff"]

to identify and subscribe to a camera source near Alice.
If $alice-locator refers to the event stream produced by
the filter, then the arrival of the event resolves $alice-
locator:room to “120”, as shown, which matches the
name advertised by the camera source in the lower left.

Graph specifications. To arrange the context-
sensitive subscription depicted in Figure1(a), Safety-
Cam uses the graph specification shown in Figure1(b).
The graph specification contains two parts,define
and load . The load section provides the URL and

[measure="location",
 user="all",
 building="Sudikoff",
 granularity="room",
 provider="versus"]

[user="alice",
 timestamp="1032882043622"
 room="120"]

[sensor="camera",
 color="true",
 resolution="640x320",
 room="120",
 building="Sudikoff"]

Filter

SafetyCam
Application

[sensor="camera",
 room="120",
 building="Sudikoff"]

(a) A nursing-home example shows the sources (locator and
camera), operator (filter), names (in rectangles), event (in
italics), and the use of the output from an operator graph to
select a name for the SafetyCam’s subscription.

define
{
 $locator := @relay <- (@any [measure="location", user="all",
 building="Sudikoff"]);
 $alice-locator := @userFilter ("alice") <- ($locator);
 $cameras := @merge <- (@all [sensor="camera", building="Sudikoff"],
 room=$alice-locator:room]);
}
load
{
 @userFilter at ("http://codebase/", "solar.operators.UserFilter");
}

(b) Example graph specification to calculate Alice’s current lo-
cation, and how it is used to define a context-sensitive sub-
scription.

Figure 1. A camera example with corre-
sponding graph and name specifications.

class name of the Java classes for any non-standard op-
erators used in the definition section, here @userFilter.
Thedefine section contains a sequence of statements,
each of which defines an operator. Each statement
defines the subscriptions for its operator, and together
the statements determine the graph structure.

The first statement defines an operator that subscribes
to any one of the publishers whose name matches the
specification in brackets. The statement assigns the vari-
able name $locator to that operator’s event stream. The
syntax “@func [name spec]” identifies the desired sub-
scriptions, using the function @func to select among the
set of names matching the name specification. Selection
functions @any and @all are built-in; the user may also
define custom selection functions.

The second statement defines an operator that filters,
transforms, or otherwise aggregates the events in its sub-
scriptions. The statement identifies a composition func-
tion and its parameters; here, the user-defined function
@userFilter takes one parameter, “alice”, and the name
of an input event stream, $locator. The filter discards any
input event that does not contain attribute user=“alice”.
The result is a stream of events containing Alice’s cur-

subscribe(String graph-spec);

advertise(String graph-spec, String name-spec);

query(String graph-spec, String name-spec, boolean flag);

launch(String graph-spec, String name-spec);

// application subscribes to the root operator of
// a specified operator graph.

// resource adverties a context-sensitive name (or static if graph-spec
// is null) to the directory.

// application makes one-time (or persistent if flag is true) context-sensitive
// name query (or static if graph-spec is null).

// application launches an operator graph (defined in graph-spec) and
// assigns a static name to the root operator.

Figure 2. The set of Solar API methods.

rent location; the event stream is called $alice-locator.
The third statement defines an operator $cameras,

which simply merges all photo events received from
camera sources co-located with Alice. This merge oper-
ator has a context-sensitive subscription, using the built-
in selector @all and the context-sensitive name spec-
ification mentioned earlier. The events in the stream
$alice-locator determine the subscriptions of this merge
operator.

The SafetyCam application may receive the stream
of photo events by simply providing this graph speci-
fication (see thesubscribeinterface in Figure2); since
$cameras is the root of the resulting operator graph, the
SafetyCam receives its events. The Solar system de-
ploys the operators, arranges the subscriptions, and ac-
tively monitors the context-sensitive name specifications
to adjust subscriptions as necessary. Notice that Fig-
ure 1(a) is a conceptual diagram and does not contain
the relay and merge operators defined in Figure1(b);
the purpose for these operators will become clear below
where we discuss operator-graph deployment.

Context-sensitive name queries and advertisements.
The above example demonstrates the use of a context-
sensitive name to support a context-sensitive subscrip-
tion request from the SafetyCam application. A simi-
lar graph specification (without the $cameras definition)
could also be used by an application that simply wishes
to query the name service for a list of camera sources
near Alice, using the name specification

[sensor="camera", room=$alice-

locator:room, building="Sudikoff"]

as a query. The application could ask once to receive
the current list of matching names, or it could register
a persistent query, and be notified any time the set of
matching names changes (see thequeryinterface in Fig-
ure2).

In another situation, suppose Alice carries a cam-
era that provides a photo-capture source. Her camera
source provides the same graph specification and the

above name specification as an advertisement; the result
is that the camera has a context-sensitive name adver-
tisement (see theadvertiseinterface in Figure2).

3 System architecture

Solar is a framework for collecting, processing, and
disseminating context information to context-aware ap-
plications. A Solar system consists of a collection of
peers, called Planets. Each Planet typically resides on
a fixed host with reasonable computational resources
and a consistent network connection. The Planets are
collectively responsible for the execution of operators,
the deployment of operator graphs, the dissemination of
events, and the implementation of the name service. Re-
sources and applications obtain Solar’s services by con-
necting to any Planet. Further details about Solar are
available in our earlier papers [5, 6]; in this paper, we
focus on the naming system.1

A resource, such as a context source, may contact
any Planet with a request to advertise a name, provid-
ing a graph specification if the name is context-sensitive
(see theadvertiseinterface in Figure2). The Planet cre-
ates an internal object as a proxy for the source, and the
proxy internally registers that name. Subscribers nam-
ing that source actually subscribe to the proxy, which
forwards events from the source to all subscribers.

An application may contact any Planet with a name
query, providing a graph specification if the name is
context-sensitive (see thequery interface in Figure2).
The Planet creates a proxy object to service the query.
An application may also contact any Planet with a graph
specification if it wishes to subscribe to a context event
stream (seesubscribeinterface in Figure2). The Planet
deploys the desired operator graph and creates a proxy
object to serve the application, which subscribes to the
operator graph and forwards any received events.

A proxy is responsible for managing the subscrip-
tions on behalf of its client, for managing context-
sensitive names, and for forwarding events. The use of
proxies allows us to manage subscriptions and names
entirely inside the Planet, which is reliable and well-
connected, rather than on the host of the source or ap-
plication, which may be slow or poorly connected.

Internally, we build Solar’s name service on top of a
generic directory service, using Solar operators to ob-
tain, process, and monitor the necessary context infor-
mation. This layered approach allows us to leverage
existing research on (and implementations of) scalable,
distributed, and flexible directory services.

In particular, we used the Intentional Naming System
(INS) to implement the directory service [1]. To Solar

1An early Solar paper [4] describes a different name system; this
paper represents an entirely new approach to naming.

INS Layer

source

(1)

resourceapplication

Planet

(2)
(3)

(3)

(3)

(5)

(4)

Planet

INS
Resolver

Planet
P P

P

Figure 3. System architecture with both
the Solar and INS layers. The shaded
circle is an operator that may process
events from the source to provide context
for an application’s name query or a re-
source’s name advertisement. The ovals
marked with P are proxies representing
connected Planet clients. Arrows repre-
sent (1) context-sensitive advertisement;
(2) context-sensitive query; (3) contextual
events; (4) actual query based on cur-
rent context; (5) actual name advertise-
ment based on current context.

we add INS resolvers, as shown in Figure3. After sum-
marizing INS, and our extensions to INS, we describe
how Planets use INS for name queries and name adver-
tisements.

3.1 Extending INS

INS is a resource-discovery and communication sys-
tem [1]. In conventional networks, a name service re-
solves names to addresses, then routers route messages
to destination addresses. In INS, a distributed collection
of resolversform an overlay network that routes mes-
sages to destination names. Thus, INS combines name
resolution and message routing into a single abstraction.

To receive messages, an application “advertises” its
name by announcing it to any INS resolver. The re-
solvers disseminate the name throughout the resolver
network. Name records are discarded as they age, so
an application must re-advertise the name periodically.

An application may send an intentionalanycastmes-
sage to a given namepattern; the resolvers route the
message to any destination with a matching name.
[Names and patterns are sets of hierarchical attribute-
value pairs; a pattern matches a particular name if all
attributes of the pattern are present in the name, and the
values of corresponding attributes are equal.] An appli-
cation may also send an intentionalmulticastmessage
to a given pattern; the resolvers route the message toall

destinations with matching names.
INS clients can request a list of advertised names that

currently match a pattern. There is no mechanism, how-
ever, for a client to register a callback so it can be noti-
fied when a new matching name arrives, or an old match-
ing name disappears. To support name queries, the di-
rectory service must match a new pattern against exist-
ing names; INS has that capability. To supportpersistent
name queries, new names must be matched against ex-
isting patterns; INS does not have that capability.

When routing a message, INS delivers a message to
a destination if the message is tagged with a pattern
that is a subset of the destination’s name. We extended
INS to support superset matching in addition to sub-
set matching. Messages tagged with [type=name] use
the default subset matching, and messages tagged with
[type=pattern] use our new superset matching.

Next, we show how Solar transparently adds these
tags and uses the new feature to support persistent
queries.

3.2 Using INS

For each use of a name specification, the Planet cre-
ates amonitor object to interact with INS. The moni-
tor is attached directly to the object associated with the
name: the operator (or proxy) advertising a name, or the
operator (or proxy) requiring a persistent name query.

Consider “static” names, those that do not depend
on context. Suppose an application wishes to sub-
scribe to all sources whose name matches the pattern
[sensor=“camera”], and sends a simple graph specifica-
tion describing such a request to a Planet. Upon pars-
ing the graph specification, the Planet creates a proxy
and an associated monitor. The monitor converts the
Solar name into INS syntax [sensor=camera] and uses
INS in two ways: a) it asks INS for a list of existing
names that match pattern [sensor=camera][type=name]
and returns to the subscriber these names in Solar’s
format, and b) it creates an announcer thread to ad-
vertise the INS name [sensor=camera][type=pattern].
Later, when a new publisher asks its proxy to ad-
vertise [sensor=“camera”, color=“true”], the moni-
tor associated with that proxy uses INS in two
ways: a) it creates an announcer thread to adver-
tise a name [sensor=camera][color=true][type=name],
and b) it sends an intentional multicast to [sen-
sor=camera][color=true][type=pattern] with a payload
indicating “new name.” The purpose of the “type” at-
tribute is to allow new patterns to find names, and new
names to find patterns.

Now consider a context-sensitive name specifica-
tion; over time, the name may change. Solar de-
ploys an operator graph according to the accompa-

nying graph specification, and subscribes the name’s
monitor to the resulting event stream. The moni-
tor receives each event and re-computes the value of
the name, substituting concrete values. For exam-
ple, [sensor=“camera”, room=$locator:room] becomes
[sensor=“camera”, room=“215”] upon receipt of an
event with attribute room=“215” from the $locator event
stream.

For a context-sensitive name advertisement, when the
monitor detects that the name has changed, it a) sends
a special meta-event to the operator’s subscribers, in-
dicating the name change; b) sends an INS intentional
multicast to the “type=pattern” form of the old name,
indicating the name change; c) tells INS to unadvertise
the “ type=name” form of the old name; d) tells INS to
advertise the “type=name” form of the new name; and
e) sends an intentional multicast to the “type=pattern”
form of the new name. The result is to inform current
and future subscribers that the old name is gone and the
new name is here.

For a context-sensitive name query, when the mon-
itor detects that the name has changed, it a) asks INS
to provide a list of matching advertisers using the
“ type=name” form of the new name; b) asks INS to
unadvertise the “type=pattern” form of the old name;
and c) asks INS to advertise the “type=pattern” form of
the new name. The result is to be notified of any future
names that might match this pattern.

A monitor attached to an operator is responsible for
adjusting the operator’s subscriptions whenever neces-
sary. If it receives an INS message or a Solar meta-event
indicating a change in the set of matching names, the
monitor evaluates the new set using the selection func-
tion to determine the set of desired subscriptions.

3.3 Example

In Figure4 we show the deployment of the two vari-
ants of the camera example from Figure1(b). Case
(a) depicts a camera source with a location-dependent
name, and case (b) depicts applications with location-
dependent subscriptions to camera sources.

In both cases, the $locator operator’s monitor finds all
the locators in Sudikoff and picks any one of them (using
selection function @any), so that the $locator operator
subscribes to that locator source. (The locator sources
are not shown in the figure). If for some reason the loca-
tor source changes its name and no longer matches the
pattern, the monitor of its proxy sends a meta-event to
its subscribers including $locator. The $locator moni-
tor receives the meta-event and selects another locator
among matching names. The events produced by $loca-
tor are filtered to produce $alice-locator, then used by
the proxy’s monitor to adjust the name advertisement

INS

[user="alice", room="120",
build="Sudikoff"]

(b)

[sensor=locator] [user=all]
[building=Sudikoff] [_type=pattern]

[sensor=camera] [room=120]
[building=Sudikoff] [_type=pattern]

 SaftyCam
 Application

any cameras

proxy

$alice-locator
@userFilter

$locator

any subscribers

INS

$alice-locator

@any

proxy

M$locator

[sensor=camera] [room=120]
[building=Sudikoff] [_type=name]

[user="alice", room="120",
build="Sudikoff"]

@userFilter

[sensor=locator] [user=all]
[building=Sudikoff] [_type=pattern]

(a)

Camera
Source

M

@any
M

@all
M

Figure 4. (a) A deployment of the context-
sensitive name advertisement of the mo-
bile camera carried by Alice. (b) A deploy-
ment of the context-sensitive subscription
to all cameras co-located with Alice.

(case a) or subscription (case b).
Again, the Solar system and our naming approach

could use any scalable, decentralized naming ser-
vice that support attribute-based queries and persistent
queries. In this section we demonstrate how to extend
INS to fill that role, but other implementations are pos-
sible.

3.4 The Planets

A Solar system consists of a collection of peer
Planets, typically on separate but well-connected hosts
in a distributed network. The Planets, written entirely in
Java, form the execution environment for proxies, oper-
ators, and their attached monitors.

When a client connects to a Planet of its choice and
submits its request, the Planet installs a proxy object for
the client. The proxy relays messages and events be-
tween the client socket connection and the operators in
the Solar system. The Planet parses the name and graph
specifications in the client’s request, creating operator
and monitor instances according to the graph specifica-
tion. The Planet arranges any static subscriptions be-
tween the operators, and monitors arrange an operator’s
context-sensitive subscriptions.

For each operator, the Planet maintains a list of sub-
scribers and a queue of input events. A Planet thread
passes input events one at a time, in the order received,

to the operator’shandleEvent method. That method
maypublish events, which are delivered to the input
queue of each local subscriber, and to a network queue
for subscribers on other Planets.

The Planets of a Solar system connect directly to
each other, as needed, forming an overlay network for
event dissemination. The Planet uses a queue and a
thread to control the flow of events into a socket, and
a thread to receive and distribute events at the other
end of a socket. If more than one subscriber to a pub-
lisher reside on the same Planet, only one copy of pub-
lished event is delivered to the subscribers’ Planet. Fur-
ther event-dissemination optimization, including batch-
ing and compression, remains future work.

3.5 Generalizing the framework

Solar is the backend system that implements the
context-sensitive name service, and it also uses this
name service to allow Solar applications to find and sub-
scribe to Solar publishers. Thus the above discussion
mainly focuses on named publishers (whether sources or
operators) and applications as subscribers. Our frame-
work, however, can also support context-sensitive names
for other types of resources and applications. Ser-
vices, for example, may ask Solar to advertise a context-
sensitive name, using the same interface as for named
publishers. Clients may ask Solar to provide a list of ser-
vices, once or persistently, matching a static or context-
sensitive name query. After a client locates a service,
client-server communication may take any path, such as
a socket or remote-method invocation (RMI), outside the
Solar system.

4 Experiments and evaluation

We set out to measure the name-update performance
of Solar’s naming service. To obtain realistic events for
our experiments, for 12 days we recorded the sensor data
from a location system installed in our building.2 For
our experiments we created a “replay source” that read
this trace and published each sensor reading as an event,
and used it to drive our test clients.

For our experiments we used a set of fixed hosts
(FH)3 with 100 Mbps duplex connections. The average
network latency among them was 0.37 ms. We also used
two mobile hosts (MH): a Linux laptop4 and a pen-based

2An IR-based badge-tracking system provided by Versus Tech-
nologies, Inc., http://www.versustech.com/.

3Dell GX260, 2.0 GHz Pentium 4, 256 MB RAM, running RedHat
Linux 2.4.18-openmosix.

4Gateway Solo 3400, 450 MHz Intel Pentium 2, 128 MB RAM,
running RedHat Linux 2.4.18-14.

Versus
Source

ThinService

(b)

Planet
INS
AppINS

(a)

T A F

SelfService INS
INS
App

Versus
Source

INS
Sender

INS

(c)

INS
App

P M

P

M

Figure 5. The setup for the latency tests
(rectangle represents a FH or MH, P as
proxy, and M as monitor): (a) Thin-
Service sends a context-sensitive name-
advertisement request to the Planet; (b)
SelfService manages context-sensitivity
by itself; and (c) a base case for INS-only
latency, no event processing is involved.

Windows tablet.5 The mobile hosts were connected via
802.11b through a dedicated access point with a clear
11 Mbps channel (distinct from channels used by any
other nearby access point). The average network latency
from a FH to the tablet was 2.9 ms and to the laptop
was 2.7 ms. We used Sun Microsystem’s Java runtime
(v1.4.1-hotspot) on all platforms.

4.1 Latency measurements

Consider the task of advertising a location-sensitive
name, based on the Versus location data. We compare
an approach with Solar and an approach without Solar
(see Figure5).

In the Solar approach (Figure5a), we set up an oper-
ator graph to provide the desired event stream, using our
Versus replay source, a transformation operator (T) that
converted badge and sensor numbers to symbolic names,
an aggregation operator (A) that remembered the current
location of each badge and produced an event whenever
a badge changed location, and a filter operator (F) that
removed all events except those about a particular per-
son. We created a dummy “ThinService” that submitted
this operator graph with a simple context-sensitive name
specification.

In the other approach (Figure5b), a “SelfService” ap-
plication received all the events directly from the Ver-
sus source and did all the transformation and filtering
internally. Whenever it detected a location change, it
announced a new name to INS and sent a name-update

5Fujitsu C-500, 500 MHz Celeron, 128 MB RAM, running Win-
dows 2000.

multicast message to all matching patterns. We used
a standalone INS client application, which registered a
simple pattern to receive these name-update messages.

For comparison, we also measured the INS-only con-
figuration in Figure5c. An INS client “sender” period-
ically changed its announced name by announcing it to
an INS resolver. An INS client application received all
the name-update messages and calculated the difference.
This configuration allowed us to isolate the overhead of
event handling of the other two cases.

The replay source published many events, but only
a few ultimately caused any change in the advertised
name. We call such events “triggering events.” For
our experiments, we used a reduced trace that contained
only the triggering events, since our goal was to mea-
sure the latency between the moment our replay source
produced a triggering event and the moment that a client
application noticed the name change. Each message
contained the timestamp of the original event produced
by our replay source. By arranging for this INS applica-
tion to be on the same host as the replay source, the ap-
plication simply subtracted the event’s timestamp from
the current time, obtaining the latency without concern
for clock skew.

Figure6(a) shows the latencies for the three config-
urations of Figure5, using only fixed hosts. The pur-
pose of this test is to demonstrate the overhead of our
approach, and to isolate the effects of the INS core. The
x axis represents the progress of time, marked by the
count of triggering events. Each data point is the moving
average of the preceding 20 triggering events. ThinSer-
vice and SelfService had similar performance because
the bulk of their work, aggregating context information
and updating INS, was essentially the same and executed
in a similar environment (by the SelfService on an FH or
by operators in a Planet on an FH). In general, ThinSer-
vice had more overhead because it partitioned the work
into three operators and connected them with queues,
and there was some overhead for queue management. A
substantial fraction of the latency, and its variation, was
in INS. The bottom curve of Figure6(a) shows the la-
tency for the INS-only approach of Figure5c. Clearly
INS was a significant source of the variation seen in the
other curves.

Note that latencies became smaller as the experiment
progressed, due to the incremental compilation by the
“Hotspot” JVM, but reached steady state after a few
hundred events. There were, however, noticeable vari-
ations, caused by thread scheduling and temporary net-
work congestion. The latency numbers were fairly
small, so these factors had a visible effect on the overall
latency.

Our second test demonstrates the advantage of our in-
frastructure approach. Figure6(b) shows that the Thin-

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

Number of triggering events

M
ov

in
g

av
er

ag
e

of
 n

am
e−

up
da

te
 la

te
nc

y
(m

s)
ThinService on FH
SelfService on FH
INS only

(a) Latency comparison with services on fixed hosts.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

Number of triggering events

M
ov

in
g

av
er

ag
e

of
 n

am
e−

up
da

te
 la

te
nc

y
(m

s)

SelfService on MH (Win2K Tablet)
SelfService on MH (Linux Laptop)
ThinService on MH (Win2K Tablet)

(b) Latency comparison with services on mobile hosts.

Figure 6. Results of latency tests.

Service using Solar clearly outperformed SelfService
when these services ran on a mobile host. The name up-
dates issued by SelfService (on the Linux laptop) took
about twice as long to reach applications as those is-
sued by Solar on behalf of the ThinService. This situa-
tion perfectly demonstrates the value of Solar’s ability to
off-load context aggregation and name updates into the
infrastructure, particularly for poorly connected client
hosts.

It is interesting to see that running SelfService on the
tablet adds further delay and variation. While we have
no explanation for the variation, it is likely related to in-
efficiency of the Java runtime, driver, or OS on the tablet.
In any case, Solar’s approach minimizes the impact of
the client environment by moving the context collection,
aggregation, and monitoring into the infrastructure.

4.2 Scalability analysis

To evaluate a Planet’s capability to support name up-
dates under heavy load, we devised an experiment with
a single Planet on one FH, a single INS resolver on an-
other FH, and an array of FHs with clients that request
context-sensitive name advertisements. Each client host
had three processes: a ThinService, a Versus replay
source, and an INS application. The ThinService made
the advertisement request, with a graph specification that
transformed, aggregated and filtered the Versus location
events. The output of the operator graph defined the
context-sensitive name for the ThinService. The Ver-
sus source advertised a static name, chosen carefully so
that it could only be discovered by the ThinService on
the same host. The INS application announced a pat-
tern so it could receive name-update messages about
the ThinService on the same host. The Versus source
publishes (only) the triggering events at a fixed inter-
val, and the sequence number of the event is carried
by the name-update message. All the sources waited
for a “go” command issued from a control console be-
fore they started publishing events. The independence of
each host’s sources, graphs, and applications is not typi-
cal of a real Solar system but allows us to easily scale the
number of client applications and their associated load.

We first measured the maximum (triggering) event
processing throughput of the Planets. A triggering event
was considered processed by the Planet after it triggered
a monitor to cancel its previous name announcement,
announced a new name based on the values in the event,
and sent out a name-update message. While varying the
number of client applications and publishing rates, we
sampled the length of the queues in the Planet to find
the maximum throughput that kept the queue length sta-
ble. The result is about 870 events per second for one
Planet.

The above measurements did not consider, however,
the scalability of the directory service, in this case INS.
In the next experiment we distributed 40 client applica-
tions over 20 FHs and varied each Versus source’s pub-
lishing rate. The INS application co-located with each
source calculated the name-update throughput. We show
the results in Figure7. Instead of reaching 870 name up-
dates per second, the throughput peaked near 500. With
40 clients each pushing over 10 triggering events per
second, the INS resolver was overloaded and some pack-
ets were lost (INS routes name-update messages using
UDP packets). The green curve (with * marks) shows
the loss rate. The red curve (with+ marks), which is
the sum of name-update throughput and loss rate, flat-
tens near 910 indicating the maximum event-processing
throughput of the Planet. The number is similar to
(though a bit higher than) the conservative throughput

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

Publishing rate of the triggering events (per second)

N
um

be
r o

f n
am

e−
up

da
te

s
(p

er
 s

ec
on

d)

Name−update throughput
Name−update loss rate
Sum of above two

Figure 7. Results of scalability tests, mea-
suring throughput of the Planets and the
whole system under the load caused by
an array of sources publishing triggering
events at a fixed interval.

we measured above (about 870 events per second).
This experiment demonstrates that the Solar system is

scalable to the limits of INS, but further experiments are
necessary to determine the scalability of our approach
on a more realistic workload.

In this experiment, all events were triggering events.
In practice, the majority of incoming events are not trig-
gering events, so the system would achieve higher gross
event throughput. On the other hand, the three opera-
tors we used in our operator graph were quite simple. A
computationally intensive operator can dramatically re-
duce the throughput. While it is possible for the Solar
system to distribute operators across Planets to balance
the load, or increase the number of Planets and INS re-
solvers to achieve overall system scalability, ultimately
the system will be limited by the Planet CPU(s), by the
network, or by the directory service (INS), if a context-
sensitive request is defined by a fast event-generating
source. Clearly, appropriate and effective flow control
is important, but difficult, and remains future work.

5 Related work

INS [1] unifies resource discovery (naming) and
communication (message routing). Applications de-
siring context-sensitive names, however, must monitor
the context themselves and re-advertise their name as
needed. Furthermore, INS does not support persistent
name queries. Solar uses an extended version of INS
as the directory service at the core of its own context-
sensitive name service. By offloading context process-
ing and monitoring to Planets in the Solar infrastructure,

our framework improves responsiveness and scalability.
INS/Twine achieves more scalability by partitioning

the name space across resolvers by mapping names into
numeric keys [2]. Solar could use INS/Twine as its core
directory service, but would need a different mechanism
to implement persistent queries.

A Location Information Server (LIS) [12] integrates
location information and a resource directory, based on
the X.500 directory service and the Light Weight Ac-
cess Protocol (LDAP). The LIS shields the application
from the methods for obtaining the location information
and provides a set of APIs for query and event notifica-
tion. While LIS provides some Solar features, includ-
ing limited context translation and support for location-
sensitive names, the capability of LIS is limited by the
predefined configurations and rules. Solar provides a
programmable interface to allow arbitrary definition of
context-sensitive names. Solar also uses peer Planets
to cooperatively service clients’ requests and to dissem-
inate contextual events, for better responsiveness and
scalability.

A non-procedural language, iQL, can also specify
the logic for composing pervasive data into context [7].
Their model supports both requested and triggered eval-
uation. For one composer, iQL allows the inputs to be
continually rebound to appropriate data sources as the
environment changes. The iQL language is powerful
and expressive, with many language-level facilities for
context aggregation. The language iQL complements
Solar in two ways: iQL could be the programming lan-
guage for individual operators, or iQL could be the high-
level specification language the compiler could decom-
pose into a graph specification used by Solar.

The Context Toolkit provides several abstractions to
construct a context service [9]. It is a distributed archi-
tecture supporting context fusion and delivery. It uses a
widget to wrap a sensor, through which the sensor can
be queried about its state or activated. Applications can
subscribe to pre-defined aggregators that compute com-
monly used context. Solar allows applications to dy-
namically insert operators into the system and to com-
pose refined context that can be shared by other applica-
tions. The Context Toolkit provides a static attribute-
based directory to allow its components to register a
name so applications can find them. It does not sup-
port context-sensitive names or subscriptions, or persis-
tent name queries.

There are numerous directory services and resource-
and service-discovery systems. Jini [13] allows a client
to locate a service and download its proxy interface,
matching on the class of the proxy. The Service Lo-
cation Protocol (SLP) focuses on the protocol for auto-
matic discovery [10], Czerwinski et al. focus on expres-
siveness and security [8], and Castro et al. deals with

inter-domain service discovery [3]. DeapSpace [15] and
Heidemann et al. [11] propose approaches for discovery
in ad-hoc sensor networks. None of these systems, how-
ever, has explicit support for context-sensitive names or
subscriptions.

6 Summary

In this paper we describe Solar’s approach to support
context-sensitive resource discovery. Solar encodes con-
textual information as attribute-based events, published
by sources. Solar provides a specification language for
clients to select the desired sources and to construct an
operator graph to aggregate context, which may be used
directly by the application, to define a name, or to make
a persistent name query. Although our examples use
only location context, Solar is capable of using any form
of context information in context-sensitive names.

Solar uses a collection of “Planets” to cooperatively
execute the operator graph. Planets monitor the context
produced by that graph to update the name space and to
notify interested applications about name changes. Con-
text monitoring is recursive, since the operator graph it-
self can refer to context-sensitive source names.

In particular, Solar uses an extended version of the
Intentional Naming System (INS) to implement the core
directory service and persistent name queries. We mea-
sured the name-update latency and analyzed the name-
update scalability. We conclude that Solar’s approach is
responsive because it off-loads context aggregation, dis-
semination, and monitoring into a scalable infrastructure
of cooperating Planets, and is likely to be scalable.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley. The design and implementation of an inten-
tional naming system. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles, pages
186–201, Kiawah Island Resort, South Carolina, De-
cember 1999. ACM Press.

[2] M. Balazinska, H. Balakrishnan, and D. Karger.
INS/Twine: A scalable peer-to-peer architecture for in-
tentional resource discovery. In Proceedings of the
First International Conference on Pervasive Comput-
ing, pages 195–210, Zurich, Switzerland, August 2002.
Springer-Verlag.

[3] B. P. Castro, P. C. Bisdikian, and M. Papadopouli. Locat-
ing application data across service discovery domains.
In Proceedings of the 7th Annual International Confer-
ence on Mobile Computing and Networking, pages 28–
42, Rome, Italy, July 2001. ACM Press.

[4] G. Chen and D. Kotz.Solar: Towards a flexible and scal-
able data-fusion infrastructure for ubiquitous computing.
In UbiTools workshop at UbiComp 2001, October 2001.

[5] G. Chen and D. Kotz.Context aggregation and dissemi-
nation in ubiquitous computing systems. In Proceedings
of the Fourth IEEE Workshop on Mobile Computing Sys-
tems and Applications, pages 105–114. IEEE Computer
Society Press, June 2002.

[6] G. Chen and D. Kotz. Solar: An open platform for
context-aware mobile applications. In Proceedings of
the First International Conference on Pervasive Com-
puting (Short paper), pages 41–47, June 2002. In an
informal companion volume of short papers.

[7] N. H. Cohen, H. Lei, P. Castro, J. S. Davis II, and A. Pu-
rakayastha.Composing pervasive data using iQL. In
Proceedings of the Fourth IEEE Workshop on Mobile
Computing Systems and Applications, pages 94–104,
Callicoon, New York, June 2002. IEEE Computer So-
ciety Press.

[8] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph,
and R. H. Katz.An architecture for a secure service dis-
covery service. In Proceedings of the 5th Annual In-
ternational Conference on Mobile Computing and Net-
working, pages 24–35, Seattle, WA, August 1999. ACM
Press.

[9] A. K. Dey. Providing Architectural Support for Build-
ing Context-Aware Applications. PhD thesis, College of
Computing, Georgia Institute of Technology, December
2000.

[10] E. Guttman.Service location protocol: Automatic dis-
covery of IP network services. Internet Computing,
July/August 1999.

[11] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govin-
dan, D. Estrin, and D. Ganesan.Building efficient wire-
less sensor networks with low-level naming. In Pro-
ceedings of the 18th ACM Symposium on Operating Sys-
tems Principles, pages 146–159, Chateau Lake Louise,
Canada, October 2001. ACM Press.

[12] H. Maaß.Location-aware mobile applications based on
directory services. In Proceedings of the 3rd Annual In-
ternational Conference on Mobile Computing and Net-
working, pages 23–33, Budapest, Hungary, September
1997. ACM Press.

[13] S. Microsystems.Jini architecture specification, Decem-
ber 2001.

[14] K. Minami and D. Kotz. Controlling access to perva-
sive information in the “Solar”system. Technical Report
TR2002-422, Dept. of Computer Science, Dartmouth
College, February 2002.

[15] M. Nidd. Service discovery in DEAPspace. IEEE Per-
sonal Communications, 8(4):39–45, August 2001.

[16] M. Weiser.The computer for the 21st century. Scientific
American, 265(3):66–75, Jan. 1991.

http://www.acm.org/pubs/citations/proceedings/ops/319151/p186-adjie-wi% noto/
http://www.acm.org/pubs/citations/proceedings/ops/319151/p186-adjie-wi% noto/
http://link.springer.de/link/service/series/0558/bibs/2414/24140195.ht% m
http://link.springer.de/link/service/series/0558/bibs/2414/24140195.ht% m
http://www.cs.dartmouth.edu/~dfk/papers/chen:solar.pdf
http://www.cs.dartmouth.edu/~dfk/papers/chen:solar.pdf
http://www.cs.dartmouth.edu/~dfk/papers/chen:abstraction.pdf
http://www.cs.dartmouth.edu/~dfk/papers/chen:abstraction.pdf
http://www.cs.dartmouth.edu/~dfk/papers/chen:pervasive.pdf
http://www.cs.dartmouth.edu/~dfk/papers/chen:pervasive.pdf
http://www.computer.org/proceedings/wmcsa/1647/16470094abs.htm
http://doi.acm.org/10.1145/313451.313462
http://doi.acm.org/10.1145/313451.313462
http://www.cc.gatech.edu/fce/ctk/pubs/dey-thesis.pdf
http://www.cc.gatech.edu/fce/ctk/pubs/dey-thesis.pdf
http://www.computer.org/internet/ic1999/w4071abs.htm
http://www.computer.org/internet/ic1999/w4071abs.htm
http://www-cse.ucsd.edu/sosp01/papers/heidemann.pdf
http://www-cse.ucsd.edu/sosp01/papers/heidemann.pdf
http://www.acm.org/pubs/citations/proceedings/comm/262116/p23-maas/
http://www.acm.org/pubs/citations/proceedings/comm/262116/p23-maas/
http://wwws.sun.com/software/jini/specs/jini1.2html/jini-title.html
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-422/
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-422/
http://www.comsoc.org/livepubs/pci/public/2001/aug/index.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

	Introduction
	The specification language
	System architecture
	Extending INS
	Using INS
	Example
	The Planets
	Generalizing the framework

	Experiments and evaluation
	Latency measurements
	Scalability analysis

	Related work
	Summary

